首页> 外文OA文献 >Static Optimality and Dynamic Search-Optimality in Lists and Trees
【2h】

Static Optimality and Dynamic Search-Optimality in Lists and Trees

机译:列表和树中的静态最优和动态搜索最优

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Adaptive data structures form a central topic of on-line algorithms research. The area of Competitive Analysis began with the results of Sleator and Tarjan showing that splay trees achieve static optimality for search trees, and that Move-to-Front is constant competitive for the list update problem [ST1], [ST2]. In a parallel development, powerful algorithms have been developed in Machine Learning for problems of on-line prediction [LW], [FS]. This paper is inspired by the observation made in [BB] that if computational decision-making costs are not considered, then these ``weighted experts\u27\u27 techniques from Machine Learning allow one to achieve a 1+ε ratio against the best static object in hindsight for a wide range of data structure problems. In this paper we give two results. First, we show that for the case of lists , we can achieve a 1+ε ratio with respect to the best static list in hindsight, by a simple efficient algorithm. This algorithm can then be combined with existing results to achieve good static and dynamic bounds simultaneously. Second, for trees, we show a (computationally in efficient) algorithm that achieves what we call ``dynamic search optimality\u27\u27: dynamic optimality if we allow the on-line algorithm to make free rotations after each request. We hope this to be a step towards solving the longstanding open problem of achieving true dynamic optimality for trees.
机译:自适应数据结构构成了在线算法研究的中心主题。竞争分析的领域始于Sleator和Tarjan的结果,该结果表明,展开树对搜索树达到静态最优,并且“向前移动”对于列表更新问题[ST1],[ST2]一直具有竞争力。在并行开发中,机器学习中已经开发出功能强大的算法来解决在线预测[LW],[FS]问题。本文的灵感来自于[BB]中的观察,即如果不考虑计算决策成本,那么这些来自机器学习的``加权专家''技术就可以使最佳静态静噪比达到1 +ε事后看来,对象是各种各样的数据结构问题。在本文中,我们给出两个结果。首先,我们证明对于列表,通过简单有效的算法,相对于事后看来,最佳静态列表可以达到1 +ε的比率。然后可以将此算法与现有结果结合起来,以同时实现良好的静态和动态边界。其次,对于树木,我们展示了一种算法(从效率上讲是有效的),如果我们允许在线算法在每次请求后自由旋转,则该算法可以实现所谓的``动态搜索最优性:动态最优性''。我们希望这是解决长期存在的问题的第一步,以实现树木真正的动态最优。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号